Advanced Search
Not logged in
Log In
Register
Hot Maps
Active Authors
Featured Maps
Random
Imposible?
Hover over the thumbnail for a full-size version.
Author
Sigmar
Tags
author:sigmar
playable
puzzle
unrated
v1.3c
Created
2004-10-14
Rating
2 more votes required for a rating.
Map Data
$Imposible?#Sigmar#none#00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011111100000000000000011100001000000000000000100000010000000000000001000000100000000000000010000001111111111111000110000000000000000010001100000000000000000000010000001111111111111000100000010000000000000001000000100000000000000011100001000000000000000001111110000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000|5^264,132!9^156,156,1,0,10,10,1,0,-1!9^180,156,1,0,11,10,1,0,-1!9^204,156,1,0,10,12,1,0,-1!9^228,156,1,0,11,12,1,0,-1!9^252,156,1,0,10,14,1,0,-1!9^276,156,1,0,11,14,1,0,-1!9^300,156,1,0,10,16,1,0,-1!9^324,156,1,0,11,16,1,0,-1!9^348,156,1,0,10,18,1,0,-1!9^372,156,1,0,11,18,1,0,-1!9^156,228,1,0,10,20,1,0,-1!9^372,228,1,0,11,20,1,0,-1!2^180,240,0,-1!2^204,240,0,-1!2^228,240,0,-1!2^300,240,0,-1!2^324,240,0,-1!2^348,240,0,-1!2^384,204,-1,0!2^384,180,-1,0!2^144,180,1,0!2^144,204,1,0!7^252,252,1!7^276,252,1!7^252,300,1!7^276,300,1!7^276,348,1!7^252,348,1!7^252,396,1!7^276,396,1!7^276,444,1!7^252,444,1!7^252,492,1!7^276,492,1!7^252,492,0!7^252,444,0!7^252,396,0!7^252,348,0!7^252,300,0!7^252,252,0!7^276,276,2!7^276,324,2!7^276,372,2!7^276,420,2!7^276,468,2!9^324,192,1,0,11,21,1,0,-1!9^204,192,1,0,10,21,1,0,-1!9^252,252,0,1,10,5,0,0,0!9^252,252,0,1,10,6,0,0,0!9^252,252,0,1,10,7,0,0,0!9^252,252,0,1,10,8,0,0,0!9^252,252,0,1,10,9,0,0,0!9^252,252,0,1,10,10,0,0,0!9^276,252,0,1,11,5,0,-1,0!9^276,252,0,1,11,6,0,-1,0!9^276,252,0,1,11,7,0,-1,0!9^276,252,0,1,11,8,0,-1,0!9^276,252,0,1,11,9,0,-1,0!9^276,252,0,1,11,10,0,-1,0!9^276,516,1,0,11,22,1,0,-1!9^252,516,1,0,11,22,1,0,0!9^276,564,1,1,11,22,0,0,-1!9^276,564,1,1,11,22,0,0,0!9^276,564,1,1,31,23,0,0,-1!9^276,564,1,1,30,22,0,0,-1!9^276,564,1,1,29,21,0,0,-1!9^276,564,1,1,28,20,0,0,-1!9^276,564,1,1,27,19,0,0,-1!9^276,564,1,1,26,18,0,0,-1!9^276,564,1,1,25,17,0,0,-1!9^276,564,1,1,24,16,0,0,-1!9^276,564,1,1,23,15,0,0,-1!9^276,564,1,1,22,14,0,0,-1!9^540,324,1,1,21,13,0,0,-1!9^516,300,1,1,20,12,0,0,-1!9^492,276,1,1,19,11,0,0,-1!9^468,252,1,1,18,10,0,0,-1!9^444,228,1,1,19,9,0,0,-1!9^468,204,1,1,20,8,0,0,-1!9^492,180,1,1,21,7,0,0,-1!9^516,156,1,1,22,6,0,0,-1!9^540,132,1,1,23,5,0,0,-1!9^564,108,1,1,24,4,0,0,-1!9^588,84,1,1,25,3,0,0,-1!9^612,60,1,1,26,2,0,0,-1!9^636,36,1,1,27,1,0,0,-1!9^660,36,1,1,28,1,0,0,0!9^660,36,1,1,29,1,0,0,0!9^660,36,1,1,30,1,0,0,0!9^660,36,1,1,28,4,0,0,0!9^660,36,1,1,29,4,0,0,0!9^660,36,1,1,30,4,0,0,0!9^660,36,1,1,31,4,0,0,0!9^660,36,1,1,27,4,0,0,0!9^660,36,0,1,27,4,0,-1,0!9^660,36,0,1,27,3,0,-1,0!9^660,36,0,1,27,2,0,-1,0!9^612,60,0,1,25,2,0,0,0!9^588,84,0,1,24,3,0,0,0!9^564,108,0,1,23,4,0,0,0!9^540,132,0,1,22,5,0,0,0!9^516,156,0,1,21,6,0,0,0!9^492,180,0,1,20,7,0,0,0!9^468,204,0,1,19,8,0,0,0!9^468,252,0,1,19,10,0,-1,0!9^492,276,0,1,20,11,0,-1,0!9^516,300,0,1,21,12,0,-1,0!9^540,324,0,1,22,13,0,-1,0!9^564,348,0,1,23,14,0,-1,0!9^588,372,0,1,24,15,0,-1,0!9^612,396,0,1,25,16,0,-1,0!9^636,420,0,1,26,17,0,-1,0!9^660,444,0,1,27,18,0,-1,0!9^684,468,0,1,28,19,0,-1,0!9^708,492,0,1,29,20,0,-1,0!9^732,516,0,1,30,21,0,-1,0!11^276,60,756,36!11^252,60,756,36!11^204,192,756,36!11^324,192,756,36!11^252,36,756,36!11^276,36,756,36!0^276,564!0^264,564!0^264,564!0^276,564!0^288,552!0^300,552!0^300,564!0^300,576!0^288,576!0^276,576!0^252,576!0^240,576!0^264,576!0^264,564!0^240,564!0^240,564!0^240,552!0^252,552!0^264,552!0^276,552!0^276,552!0^288,552!0^300,552!0^300,564!0^288,564!0^276,564!0^756,540!0^732,516!0^708,492!0^684,468!0^660,444!0^636,420!0^612,396!0^588,372!0^564,348!0^540,324!0^516,300!0^492,276!0^468,252!0^444,228!0^468,204!0^492,180!0^516,156!0^540,132!0^564,108!0^588,84!0^612,60!0^636,36!0^660,36!0^660,48!0^660,60!0^660,72!0^660,84!0^660,96!0^660,108!0^672,96!0^684,96!0^672,108!0^696,108!0^684,96!0^684,108!0^696,96!0^708,96!0^720,96!0^720,96!0^732,96!0^744,96!0^744,96!0^756,96!0^756,96!0^756,108!0^756,108!0^744,108!0^732,108!0^720,108!0^720,108!0^708,108!0^756,84!0^756,72!0^756,72!0^756,60!0^756,48!0^756,36!0^756,36!0^744,36!0^732,36!0^720,36!0^720,36!0^708,36!0^696,36!0^696,36!0^684,36!0^672,36!0^672,36!0^672,48!0^672,60!0^672,60!0^672,72!0^684,72!0^684,72!0^696,72!0^708,72!0^720,72!0^720,72!0^732,72!0^744,72!0^744,72!0^744,60!0^744,60!0^732,60!0^720,60!0^708,60!0^696,60!0^684,60!0^684,60!0^672,84!0^684,84!0^696,84!0^708,84!0^720,84!0^720,84!0^732,84!0^732,84!0^744,84!0^768,108!0^768,96!0^768,96!0^768,84!0^768,72!0^768,72!0^756,60!0^768,60!0^768,48!0^768,36!0^768,24!0^756,24!0^756,24!0^732,24!0^720,24!0^720,24!0^708,24!0^696,24!0^696,24!0^684,24!0^672,24!0^672,24!0^696,48!0^708,60!0^708,60!0^720,60!0^732,60!0^732,48!0^744,48!0^744,36!0^744,36!0^744,24!0^648,36!0^648,48!0^648,24!0^636,24!0^636,36!0^636,36!0^612,48!0^588,72!0^564,96!0^540,120!0^516,144!0^492,168!0^468,192!0^444,216!0^468,240!0^492,264!0^516,288!0^540,312!0^564,336!0^588,360!0^612,384!0^636,408!0^660,432!0^684,456!0^708,480!0^732,504!0^756,528!9^276,564,1,1,1,11,0,0,-1!9^276,564,1,1,2,11,0,0,-1!9^276,564,1,1,3,11,0,0,-1!9^756,36,0,1,15,2,0,0,0!9^756,36,0,1,15,1,0,0,0!9^732,36,0,1,15,1,0,0,0!9^732,36,0,1,15,2,0,0,0!9^756,60,0,1,15,1,0,0,0!9^756,60,0,1,15,2,0,0,0!9^732,36,1,1,17,9,0,0,0!9^756,36,1,1,17,9,0,0,0!9^756,60,1,1,17,9,0,0,0!9^660,108,0,0,8,23,1,0,0!9^204,540,1,1,7,22,0,0,-1!9^180,516,1,1,6,21,0,0,-1!9^156,492,1,1,5,20,0,0,-1!9^132,468,1,1,4,19,0,0,-1!9^108,444,1,1,3,18,0,0,-1!9^84,420,1,1,2,17,0,0,-1!9^60,396,1,1,1,16,0,0,-1!9^36,372,1,1,2,15,0,0,-1!9^60,348,1,1,3,14,0,0,-1!9^84,324,1,1,4,13,0,0,-1!9^60,252,1,1,3,10,0,0,-1!12^24,564!12^24,552!12^24,528!12^24,540!12^24,516!12^24,504!12^24,492!12^24,480!12^24,468!12^24,444!12^24,432!12^24,420!12^24,408!12^24,456!12^24,252!12^24,240!12^24,216!12^24,216!12^24,204!12^24,228!12^24,264!12^24,192!12^24,180!12^24,168!12^24,168!12^24,156!12^24,144!12^24,132!12^24,120!12^24,108!12^24,96!12^24,84!12^24,72!12^24,60!12^24,48!12^24,48!12^24,36!12^24,24!12^24,576!12^768,576!12^768,564!12^768,456!12^768,444!12^768,432!12^768,420!12^768,408!12^768,396!12^768,384!12^768,372!12^768,360!12^768,348!12^768,324!12^768,336!12^768,312!12^768,312!12^768,300!12^768,288!12^768,276!12^768,264!12^768,252!12^768,240!12^768,228!12^768,216!12^768,204!12^768,192!12^768,180!12^768,168!12^768,156!12^768,144!3^324,276!3^204,276!9^60,564,1,1,8,11,0,0,0!9^60,564,0,1,8,11,0,-1,0!9^420,348,0,1,13,11,0,0,0!9^420,348,1,1,13,11,0,0,0!9^108,564,1,1,8,11,0,0,0!9^108,564,0,1,8,11,0,-1,0!2^432,576,0,-1!2^420,576,0,-1!2^444,576,0,-1!2^432,576,0,-1!2^432,576,0,-1!2^432,576,0,-1!2^432,576,0,-1!2^420,576,0,-1!2^420,576,0,-1!2^420,576,0,-1!2^420,576,0,-1!2^444,576,0,-1!2^444,576,0,-1!2^444,576,0,-1!2^444,576,0,-1!0^720,48!0^708,48!0^696,48!0^684,48!0^684,48!0^624,36!0^624,24!0^624,48!0^420,228!0^420,216!0^432,216!0^432,228!0^324,324!0^324,336!0^324,348!0^336,348!0^348,348!0^348,360!0^348,372!0^336,372!0^336,372!0^324,372!0^336,324!0^348,324!0^372,324!0^372,324!0^384,324!0^396,324!0^384,336!0^384,348!0^384,360!0^384,372!0^372,372!0^396,372!0^420,324!0^420,336!0^420,348!0^420,360!0^420,360!0^420,372!0^432,372!0^432,372!0^444,372!0^456,372!0^456,360!0^456,348!0^444,348!0^432,324!0^444,324!0^456,324!0^324,396!0^324,408!0^324,420!0^324,432!0^324,444!0^336,408!0^348,420!0^360,408!0^372,396!0^372,408!0^372,420!0^372,432!0^372,432!0^372,444!0^396,444!0^396,420!0^396,432!0^396,408!0^396,396!0^408,396!0^420,396!0^432,396!0^432,408!0^432,420!0^432,432!0^432,444!0^420,420!0^408,420!0^456,396!0^456,408!0^456,420!0^456,432!0^456,444!0^468,396!0^480,396!0^492,396!0^492,408!0^492,420!0^480,420!0^468,420!0^468,432!0^480,444!9^84,552,0,1,8,23,0,-1,0!9^180,516,0,1,6,21,0,0,0!9^156,492,0,1,5,20,0,0,0!9^132,468,0,1,4,19,0,0,0!9^108,444,0,1,3,18,0,0,0!9^84,420,0,1,2,17,0,0,0!9^60,396,0,1,1,16,0,0,0!9^60,348,0,1,3,14,0,-1,0!9^84,324,0,1,3,13,0,0,0!9^108,300,0,1,4,12,0,0,0!9^108,300,1,1,5,11,0,0,0!9^132,276,0,1,5,11,0,0,0!9^60,252,0,1,2,10,0,0,0!9^108,204,1,1,4,7,0,0,0!9^108,204,1,1,4,7,0,0,0!9^108,204,1,1,4,6,0,0,0!9^60,252,0,1,3,10,0,0,0!9^60,252,0,1,3,9,0,0,0!9^60,252,0,1,3,8,0,0,0!9^60,252,0,1,3,7,0,0,0!9^60,252,0,1,3,6,0,0,0!9^60,252,0,1,3,5,0,0,0!9^60,252,0,1,3,4,0,0,0!9^108,300,1,1,1,10,0,0,0!9^108,300,1,1,2,10,0,0,0!9^108,300,1,1,3,10,0,0,0!9^60,252,0,1,3,3,0,0,0!9^60,252,0,1,3,2,0,0,0!9^60,252,0,1,2,10,0,-1,0!9^60,252,0,1,2,9,0,-1,0!9^60,252,0,1,2,8,0,-1,0!9^60,252,0,1,2,7,0,-1,0!9^60,252,0,1,2,6,0,-1,0!9^60,252,0,1,2,5,0,-1,0!9^60,252,0,1,2,4,0,-1,0!9^60,252,0,1,2,3,0,-1,0!9^60,252,0,1,2,2,0,-1,0!9^60,252,0,1,2,1,0,-1,0!6^276,276,1,0,1,1!6^276,468,1,0,1,1!9^204,564,1,1,8,23,0,0,-1!9^156,564,0,1,8,23,0,0,0!9^156,564,1,1,13,19,0,0,-1!9^156,564,0,1,13,19,0,-1,0!9^156,564,0,1,13,20,0,-1,0!9^156,564,1,1,13,20,0,0,-1!9^156,564,0,1,15,19,0,-1,0!9^156,564,0,1,15,20,0,-1,0!9^156,564,0,1,15,19,0,0,0!9^156,564,0,1,15,20,0,0,0!9^156,564,1,1,15,20,0,0,0!9^156,564,0,1,17,19,0,-1,0!9^156,564,0,1,17,20,0,-1,0!9^156,564,1,1,17,19,0,0,-1!9^156,564,1,1,17,20,0,0,0!9^156,564,0,1,20,19,0,-1,0!9^156,564,0,1,20,19,0,0,0!9^156,564,1,1,20,19,0,0,0!9^156,564,0,1,20,20,0,0,0!9^156,564,0,1,22,19,0,-1,0!9^156,564,0,1,22,20,0,-1,0!9^156,564,0,1,22,19,0,0,0!9^156,564,0,1,19,19,0,-1,0!9^156,564,0,1,19,20,0,-1,0!9^156,564,0,1,22,20,0,0,0!9^156,564,1,1,22,20,0,0,0!9^156,564,1,1,22,19,0,0,-1!9^156,564,0,1,24,19,0,-1,0!9^156,564,0,1,24,20,0,-1,0!9^156,564,0,1,24,19,0,0,0!9^156,564,0,1,24,20,0,0,0!9^156,564,1,1,24,20,0,0,0!2^468,468,-0.707106781186547,-0.707106781186547!2^468,492,-0.707106781186547,0.707106781186547!0^252,564!0^252,564!9^108,204,1,1,4,10,0,0,0!9^108,204,1,1,4,11,0,0,-1!9^108,36,0,1,24,8,0,-1,0!9^108,36,0,1,24,9,0,-1,0!9^108,36,0,1,24,8,0,0,0!9^108,36,0,1,24,9,0,0,0!9^108,36,1,1,24,9,0,0,-1!9^108,36,0,1,26,8,0,-1,0!9^108,36,1,1,26,8,0,0,-1!9^108,36,0,1,26,8,0,0,0!9^108,36,1,1,26,8,0,0,0!9^108,36,0,1,26,9,0,-1,0!9^108,36,0,1,26,9,0,0,0!9^108,36,0,1,28,8,0,-1,0!9^108,36,0,1,28,8,0,0,0!9^108,36,0,1,28,9,0,-1,0!9^108,36,0,1,28,9,0,0,0!9^108,36,1,1,28,9,0,0,-1!9^108,36,0,1,30,8,0,-1,0!9^108,36,1,1,30,8,0,0,-1!9^108,36,0,1,30,8,0,0,0!9^108,36,1,1,30,8,0,0,0!9^108,36,0,1,30,9,0,-1,0!9^108,36,0,1,30,9,0,0,0!9^108,36,0,1,24,11,0,0,0!9^108,36,0,1,24,12,0,0,0!9^108,36,0,1,26,11,0,0,0!9^108,36,0,1,26,12,0,0,0!9^108,36,0,1,28,11,0,0,0!9^108,36,0,1,28,12,0,0,0!9^108,36,0,1,30,11,0,0,0!9^108,48,0,1,30,12,0,0,0!0^600,336!0^648,336!0^696,336!0^744,336!0^732,336!0^732,348!0^744,348!0^756,348!0^756,336!0^708,336!0^708,348!0^696,348!0^684,348!0^684,336!0^660,336!0^660,336!0^660,348!0^648,348!0^636,348!0^636,336!0^612,336!0^612,348!0^600,348!0^588,348!0^588,336#
Description
Imposible?
Other maps by this author
Dead corridor
Dead corridor II
Hexagon of Maddnes